论文标题
积极的人群在有限的监督下计数
Active Crowd Counting with Limited Supervision
论文作者
论文摘要
要从人群图像中学习可靠的人反击,通常需要头中心注释。但是,注释的头部中心是一个繁琐的繁琐的过程。在本文中,我们提出了一个主动的学习框架,该框架可以在有限的监督下进行准确的人群计数:鉴于预算较小,而不是随机选择图像以注释,我们首先引入了一个主动的标签策略,以注释数据集中最有用的图像并了解它们的计数模型。重复该过程,使得在每个周期中,我们选择人群密度多样的样品,并且与以前的选择不同。在满足标签预算的最后一个周期中,还利用了大量未标记的数据:引入分发分类器将标记的数据与未标记的数据对齐;此外,我们建议混合网络中数据的分布标签和潜在表示,以特别改善训练样本之间的分布对齐。我们遵循流行的密度估计管道进行人群计数。广泛的实验是在标准基准的,即上海,UCF CC 50,购物中心,Trancos和DCC上进行的。通过注释有限数量的图像(例如,数据集的10%),我们的方法达到了距离使用数据集的完整注释的最新情况的绩效水平。
To learn a reliable people counter from crowd images, head center annotations are normally required. Annotating head centers is however a laborious and tedious process in dense crowds. In this paper, we present an active learning framework which enables accurate crowd counting with limited supervision: given a small labeling budget, instead of randomly selecting images to annotate, we first introduce an active labeling strategy to annotate the most informative images in the dataset and learn the counting model upon them. The process is repeated such that in every cycle we select the samples that are diverse in crowd density and dissimilar to previous selections. In the last cycle when the labeling budget is met, the large amount of unlabeled data are also utilized: a distribution classifier is introduced to align the labeled data with unlabeled data; furthermore, we propose to mix up the distribution labels and latent representations of data in the network to particularly improve the distribution alignment in-between training samples. We follow the popular density estimation pipeline for crowd counting. Extensive experiments are conducted on standard benchmarks i.e. ShanghaiTech, UCF CC 50, MAll, TRANCOS, and DCC. By annotating limited number of images (e.g. 10% of the dataset), our method reaches levels of performance not far from the state of the art which utilize full annotations of the dataset.