论文标题

算术进展中半融合重量模块化形式的傅立叶系数的符号

Sign of Fourier coefficients of half-integral weight modular forms in arithmetic progressions

论文作者

Darreye, Corentin

论文摘要

让$ f $为奇数和SquareFree $ n $的半融合体重尖头$ 4N $,让$ a(n)$表示其$ n^{\ rm th} $标准化的傅立叶系数。假设所有系数$ a(n)$都是真实的,那么当$ n $通过算术进程运行时,我们会研究$ a(n)$的标志。结果,我们为整数$ n \ le x $建立了一个下限,以使$ a(n)> n^{ - α} $,其中$ x $和$ x $是正的,$ f $不一定是hecke eigenform。

Let $f$ be a half-integral weight cusp form of level $4N$ for odd and squarefree $N$ and let $a(n)$ denote its $n^{\rm th}$ normalized Fourier coefficient. Assuming that all the coefficients $a(n)$ are real, we study the sign of $a(n)$ when $n$ runs through an arithmetic progression. As a consequence, we establish a lower bound for the number of integers $n\le x$ such that $a(n)>n^{-α}$ where $x$ and $α$ are positive and $f$ is not necessarily a Hecke eigenform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源