论文标题
合奏Kalman倒置,用于从时间平均数据中稀疏学习动态系统的稀疏学习
Ensemble Kalman Inversion for Sparse Learning of Dynamical Systems from Time-Averaged Data
论文作者
论文摘要
在学习中实施稀疏结构已导致数据驱动的动态系统发现领域的重大进步。但是,这种方法不仅需要访问动力学系统状态的时间序列,还需要访问时间派生。在许多应用程序中,数据仅以时空和自相关功能等时间显着性的形式获得。我们提出了一种稀疏的学习方法,以发现仅使用时间平均统计数据的(可能是随机或部分)微分方程定义的矢量字段。这种稀疏学习的表述自然会导致非线性逆问题,我们采用了集合卡尔曼倒置(EKI)的方法。之所以选择EKI,是因为它可以根据二次优化问题的迭代解决方案进行配制。然后很容易施加稀疏性。然后,我们将基于EKI的稀疏学习方法应用于由随机微分方程(嘈杂的Lorenz 63系统),普通微分方程(Lorenz 96 System and Colescence方程)和部分微分方程(Kuramoto-Sivashinsky方程)控制的各种示例。结果表明,时间平均统计数据可用于使用稀疏EKI进行数据驱动的微分方程。所提出的稀疏学习方法将数据驱动的区分方程发现的范围扩展到以前具有挑战性的应用程序和数据收购方案。
Enforcing sparse structure within learning has led to significant advances in the field of data-driven discovery of dynamical systems. However, such methods require access not only to time-series of the state of the dynamical system, but also to the time derivative. In many applications, the data are available only in the form of time-averages such as moments and autocorrelation functions. We propose a sparse learning methodology to discover the vector fields defining a (possibly stochastic or partial) differential equation, using only time-averaged statistics. Such a formulation of sparse learning naturally leads to a nonlinear inverse problem to which we apply the methodology of ensemble Kalman inversion (EKI). EKI is chosen because it may be formulated in terms of the iterative solution of quadratic optimization problems; sparsity is then easily imposed. We then apply the EKI-based sparse learning methodology to various examples governed by stochastic differential equations (a noisy Lorenz 63 system), ordinary differential equations (Lorenz 96 system and coalescence equations), and a partial differential equation (the Kuramoto-Sivashinsky equation). The results demonstrate that time-averaged statistics can be used for data-driven discovery of differential equations using sparse EKI. The proposed sparse learning methodology extends the scope of data-driven discovery of differential equations to previously challenging applications and data-acquisition scenarios.