论文标题

在干扰的Schwarzschild时空中的边缘被困

Marginally trapped surfaces in a perturbed Schwarzschild spacetime

论文作者

Le, Pengyu

论文摘要

在一般相对论的理论中,边缘捕获的表面的概念很重要。在Schwarzschild Black Hole Spacetime中,其事件范围是由略微捕获的表面散落的。在更一般的黑洞时空中,边缘捕获的表面的概念与各种地平线密切相关,例如,明显的地平线,捕获边界,孤立的地平线和动态视野。在本文中,我们研究了施瓦兹柴尔兹柴尔德时空中的一组边缘捕获的表面。我们表明,对于几乎是球体对称的每个传入的零超曲面,都存在一个独特的嵌入式边缘捕获的表面。为了证明这一结果,我们开发了一种一般方法来研究双重零坐标系中间距表面的几何形状,该系统可用于研究洛伦兹歧管中的其他问题的其他问题。

The concept of a marginally trapped surface is important in the theory of general relativity. In the Schwarzschild black hole spacetime, its event horizon is foliated by marginally trapped surfaces. In a more general black hole spacetime, the concept of a marginally trapped surface is closely related to various sorts of horizon, for example, the apparent horizon, the trapping boundary, the isolated horizon and the dynamical horizon. In this paper, we study the set of marginally trapped surfaces in a perturbed Schwarzschild spacetime. We show that for every incoming null hypersurface which is nearly spherically symmetric, there exists a unique embedded marginally trapped surface. In order to prove this result, we develop a general method to study the geometry of spacelike surfaces in a double null coordinate system, which can be applied to study other problems for spacelike surfaces in a Lorentzian manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源