论文标题
Otoworld:通过学习移动来学习分开
OtoWorld: Towards Learning to Separate by Learning to Move
论文作者
论文摘要
我们提出了Otoworld,这是一个交互式环境,代理必须学会聆听才能解决导航任务。 Otoworld的目的是促进计算机试镜中的强化学习研究,代理必须学会倾听周围的世界进行导航。 Otoworld建立在三个开源库中:用于环境和代理互动的OpenAI健身房,用于射线追踪和声学模拟的PyroomAcoustics,以及用于培训深度计算机试听模型的NUSSL。 Otoworld是一个简单的导航游戏GridWorld的音频类似物。 Otoworld可以轻松地扩展到更复杂的环境和游戏。为了解决Otoworld的一集,代理必须向听觉场景中的每个发声源移动并“关闭”。代理人除了房间的当前声音外,没有其他输入。这些来源被随机放置在房间内,数量可能会有所不同。代理商会因关闭来源而获得奖励。我们介绍了代理在Otoworld赢得的能力的初步结果。 Otoworld是开源的,可用。
We present OtoWorld, an interactive environment in which agents must learn to listen in order to solve navigational tasks. The purpose of OtoWorld is to facilitate reinforcement learning research in computer audition, where agents must learn to listen to the world around them to navigate. OtoWorld is built on three open source libraries: OpenAI Gym for environment and agent interaction, PyRoomAcoustics for ray-tracing and acoustics simulation, and nussl for training deep computer audition models. OtoWorld is the audio analogue of GridWorld, a simple navigation game. OtoWorld can be easily extended to more complex environments and games. To solve one episode of OtoWorld, an agent must move towards each sounding source in the auditory scene and "turn it off". The agent receives no other input than the current sound of the room. The sources are placed randomly within the room and can vary in number. The agent receives a reward for turning off a source. We present preliminary results on the ability of agents to win at OtoWorld. OtoWorld is open-source and available.