论文标题
$ k $ weak的常规分裂的两阶段迭代方案的收敛,并应用于covid-19大流行模型
Convergence of two-stage iterative scheme for $K$-weak regular splittings of type II with application to Covid-19 pandemic model
论文作者
论文摘要
单调矩阵在常规分裂的收敛理论和不同类型的弱常规分裂中起关键作用。如果单调性失败,那么很难确保上述矩阵类别的收敛性。在这种情况下,$ k $ - 单调性足以足以融合$ k $ regular和$ k $ - weak-weak常规分组,其中$ k $是$ \ mathbb {r}^n $的合适锥体。但是,在一般适当的锥体设置中,两阶段迭代方案的收敛理论是文献中的差距。尤其是,对于II型的弱常规分组的研究(即使在标准适当的锥体设置中,即$ k = \ mathbb {r}^n _+$)也开放。为此,我们提出了两阶段迭代方案的融合理论,以$ k $ - 在适当的锥体设置中的两种类型的常规分裂。我们提供一些足够的条件,以确保从两阶段迭代方案中诱导的分裂为$ K $的分裂,然后建立一些比较定理。我们还研究了$ k $ - 单身酮收敛理论,即在$ k $ - 耐受的II型经常分裂的情况下,固定的两阶段迭代方法。这项工作中最有趣,最重要的部分是在Covid-19大流行模型中出现的$ M $ am-久。最后,使用所提出的技术进行数值计算,以计算大流行模型中涉及的下一代基质。
Monotone matrices play a key role in the convergence theory of regular splittings and different types of weak regular splittings. If monotonicity fails, then it is difficult to guarantee the convergence of the above-mentioned classes of matrices. In such a case, $K$-monotonicity is sufficient for the convergence of $K$-regular and $K$-weak regular splittings, where $K$ is a proper cone in $\mathbb{R}^n$. However, the convergence theory of a two-stage iteration scheme in general proper cone setting is a gap in the literature. Especially, the same study for weak regular splittings of type II (even if in standard proper cone setting, i.e., $K=\mathbb{R}^n_+$), is open. To this end, we propose convergence theory of two-stage iterative scheme for $K$-weak regular splittings of both types in the proper cone setting. We provide some sufficient conditions which guarantee that the induced splitting from a two-stage iterative scheme is a $K$-regular splitting and then establish some comparison theorems. We also study $K$-monotone convergence theory of the stationary two-stage iterative method in case of a $K$-weak regular splitting of type II. The most interesting and important part of this work is on $M$-matrices appearing in the Covid-19 pandemic model. Finally, numerical computations are performed using the proposed technique to compute the next generation matrix involved in the pandemic model.