论文标题

混合图表的一些新的一般下限

Some new general lower bounds for mixed metric dimension of graphs

论文作者

Danas, Milica Milivojević, Kratica, Jozef, Savić, Aleksandar, Maksimović, Zoran Lj.

论文摘要

令$ g =(v,e)$为连接的简单图。从$ v $的顶点$ u $和$ v $之间的距离$ d(u,v)$是最短$ u-u-v $路径中的边缘数。如果$ e = uv \ in e $是$ g $的优势,而不是距离$ d(w,e)$,其中$ w $是$ g $中的某个顶点,则将$ g $中的某个顶点定义为$ d(w,e)= \ min(d(w,u),d(w,w,v,v,v))$。现在,我们可以说V $中的顶点$ w \分辨两个元素$ x,y \ in v \ cup e $如果$ d(w,x)\ neq d(w,w,y)$。混合解析集是一组顶点$ s $,$ s \ subseteq v $,并且仅当$ e \ cup v $的两个元素由$ s $的某些元素解决。与包容性相关的最小解析集称为混合解析基础,其基数称为图$ g $的混合度量尺寸。 最近引入了此图形不变,并且很感兴趣的是找到其一般属性并确定其对各种图的值的值。由于找到混合度量维度的问题是一个最小化的问题,因此感兴趣的是找到质量良好的下限。本文将介绍三个新的一般下限。使用这些下限之一确定圆环图的混合度量尺寸的确切值。最后,新的下限与文献中已知的比较将在两组实例上进行: - 所有21个订单5的图表; - 选定的12个知名图,订单从10到36。

Let $G=(V,E)$ be a connected simple graph. The distance $d(u,v)$ between vertices $u$ and $v$ from $V$ is the number of edges in the shortest $u-v$ path. If $e=uv \in E$ is an edge in $G$ than distance $d(w,e)$ where $w$ is some vertex in $G$ is defined as $d(w,e)=\min(d(w,u),d(w,v))$. Now we can say that vertex $w \in V$ resolves two elements $x,y \in V \cup E$ if $d(w,x) \neq d(w,y)$. The mixed resolving set is a set of vertices $S$, $S\subseteq V$ if and only if any two elements of $E \cup V$ are resolved by some element of $S$. A minimal resolving set related to inclusion is called mixed resolving basis, and its cardinality is called the mixed metric dimension of a graph $G$. This graph invariant is recently introduced and it is of interest to find its general properties and determine its values for various classes of graphs. Since the problem of finding mixed metric dimension is a minimization problem, of interest is also to find lower bounds of good quality. This paper will introduce three new general lower bounds. The exact values of mixed metric dimension for torus graph is determined using one of these lower bounds. Finally, the comparison between new lower bounds and those known in the literature will be presented on two groups of instances: - all 21 conected graphs of order 5; - selected 12 well-known graphs with order from 10 up to 36.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源