论文标题

自动冷冻网格筛选的注意力指导质量评估

Attention-guided Quality Assessment for Automated Cryo-EM Grid Screening

论文作者

Xu, Hong, Timm, David E., Elhabian, Shireen Y.

论文摘要

低温电子显微镜(Cryo-EM)已通过产生近原子分辨率(小于0.4 nm)3D生物学大分子的3D重建,已成为药物发现和理解疾病分子基础的一种促成技术。 3D重建所需的成像过程涉及高度迭代和经验的筛选过程,始于获得低温EM网格的低放大图像。检查了可能包含有用分子信号的正方形。然后将网格内的潜在有用的平方成像,以逐渐更高的宏伟速度成像,其目的是鉴定圆形孔中的亚微米区域(由正方形界定),以在高放大倍率下进行成像。这个艰巨的多步数据采集过程代表了用于获得高吞吐量数据收集的瓶颈。在这里,我们专注于为显微镜操作员的早期决策自动化,为平方的放大率较低,并提出了第一个深度学习框架XCryonet,以进行自动化的冷冻EM网格筛选。 Xcryonet是一种半监督,注意力引导的深度学习方法,使用有限的标记数据为自动提取的正方形图像提供了可解释的评分。当标记的数据稀缺时,结果比完全监督和无注意解决方案的结果分别提高了8%和37%。

Cryogenic electron microscopy (cryo-EM) has become an enabling technology in drug discovery and in understanding molecular bases of disease by producing near-atomic resolution (less than 0.4 nm) 3D reconstructions of biological macromolecules. The imaging process required for 3D reconstructions involves a highly iterative and empirical screening process, starting with the acquisition of low magnification images of the cryo-EM grids. These images are inspected for squares that are likely to contain useful molecular signals. Potentially useful squares within the grid are then imaged at progressively higher magnifications, with the goal of identifying sub-micron areas within circular holes (bounded by the squares) for imaging at high magnification. This arduous, multi-step data acquisition process represents a bottleneck for obtaining a high throughput data collection. Here, we focus on automating the early decision making for the microscope operator, scoring low magnification images of squares, and proposing the first deep learning framework, XCryoNet, for automated cryo-EM grid screening. XCryoNet is a semi-supervised, attention-guided deep learning approach that provides explainable scoring of automatically extracted square images using limited amounts of labeled data. Results show up to 8% and 37% improvements over a fully supervised and a no-attention solution, respectively, when labeled data is scarce.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源