论文标题
可穿越的虫洞和Brouwer固定点定理
Traversable wormholes and the Brouwer fixed-point theorem
论文作者
论文摘要
拓扑中的Brouwer固定点定理指出,对于任何连续映射$ f $,紧凑型凸的$ f $都可以承认一个固定点,即$ x_0 $,因此$ f(x_0)= x_0 $。在某些条件下,该固定点对应于可穿越的虫洞的喉咙,即$ b(r_0)= r_0 $ for Shape函数$ b = b = b(r)$。因此,可以从纯粹的数学考虑因素中推导出虫洞的可能存在,而不会超出现有的物理要求。
The Brouwer fixed-point theorem in topology states that for any continuous mapping $f$ on a compact convex set into itself admits a fixed point, i.e., a point $x_0$ such that $f(x_0)=x_0$. Under certain conditions, this fixed point corresponds to the throat of a traversable wormhole, i.e., $b(r_0)=r_0$ for the shape function $b=b(r)$. The possible existence of wormholes can therefore be deduced from purely mathematical considerations without going beyond the existing physical requirements.