论文标题
几何样式转移
Geometric Style Transfer
论文作者
论文摘要
神经风格转移(NST),其中以另一个图像的方式渲染了输入图像,近年来一直是一个相当大的进步的话题。在这段时间里的研究一直在转移颜色和纹理的各个方面主导,但这些因素只是样式的一个组成部分。样式的其他因素包括构图,所使用的投影系统以及艺术家翘曲和弯曲对象的方式。我们的贡献是引入支持几何样式转移的神经体系结构。与该领域的最新工作不同,我们在一般情况下是独一无二的,因为我们不受语义内容的限制。该新体系结构在转移纹理样式的网络之前运行,使我们能够将纹理传输到扭曲的图像。这种网络形式支持第二种新颖性:我们扩展了NST输入范式。用户可以按常见的方式输入内容/样式对,也可以选择输入内容/纹理风格/几何式三重。这三个图像输入范式将样式分为两个部分,因此为我们可以产生的输出提供了更大的多功能性。我们提供用户研究,以显示我们的产出质量,并量化几何样式转移对人类风格识别的重要性。
Neural style transfer (NST), where an input image is rendered in the style of another image, has been a topic of considerable progress in recent years. Research over that time has been dominated by transferring aspects of color and texture, yet these factors are only one component of style. Other factors of style include composition, the projection system used, and the way in which artists warp and bend objects. Our contribution is to introduce a neural architecture that supports transfer of geometric style. Unlike recent work in this area, we are unique in being general in that we are not restricted by semantic content. This new architecture runs prior to a network that transfers texture style, enabling us to transfer texture to a warped image. This form of network supports a second novelty: we extend the NST input paradigm. Users can input content/style pair as is common, or they can chose to input a content/texture-style/geometry-style triple. This three image input paradigm divides style into two parts and so provides significantly greater versatility to the output we can produce. We provide user studies that show the quality of our output, and quantify the importance of geometric style transfer to style recognition by humans.