论文标题

Orlicz球的最大熵原理和体积特性

The maximum entropy principle and volumetric properties of Orlicz balls

论文作者

Kabluchko, Zakhar, Prochno, Joscha

论文摘要

我们研究了Orlicz空间中球的精确渐近体积,并表明当环境空间的尺寸倾向于无限时,两个Orlicz球的交点的体积会经历相变。这概括了Schechtman和Schmuckenschläger的结果[Gafa,数学中的讲义。 1469(1991),174--178],用于$ \ ell_p^d $ -Balls。作为另一个应用程序,我们确定$ 2 $ -Concave Orlicz Spaces $ \ ell_m^d $的精确渐近量比。我们的方法取决于统计力学和大偏差理论的思想,更确切地说,是非相互作用粒子的最大熵或吉布斯原理,并提出了这种自然方法和新的透视图,以表明这种几何和体积问题。特别是,我们的方法解释了与$ \ ell_p^d $ -balls相关的问题中的$ p $笼统的高斯分布如何发生,当Orlicz函数为$ m(t)= | t |^p $时,它们是Orlicz球。

We study the precise asymptotic volume of balls in Orlicz spaces and show that the volume of the intersection of two Orlicz balls undergoes a phase transition when the dimension of the ambient space tends to infinity. This generalizes a result of Schechtman and Schmuckenschläger [GAFA, Lecture notes in Math. 1469 (1991), 174--178] for $\ell_p^d$-balls. As another application, we determine the precise asymptotic volume ratio for $2$-concave Orlicz spaces $\ell_M^d$. Our method rests on ideas from statistical mechanics and large deviations theory, more precisely the maximum entropy or Gibbs principle for non-interacting particles, and presents a natural approach and fresh perspective to such geometric and volumetric questions. In particular, our approach explains how the $p$-generalized Gaussian distribution occurs in problems related to the geometry of $\ell_p^d$-balls, which are Orlicz balls when the Orlicz function is $M(t) = |t|^p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源