论文标题
Nasgem:通过图形嵌入方法搜索神经架构
NASGEM: Neural Architecture Search via Graph Embedding Method
论文作者
论文摘要
神经架构搜索(NAS)自动化并繁殖神经网络的设计。最近提出了基于估算器的NAS,以模拟体系结构与其性能之间的关系,以实现可扩展和灵活的搜索。但是,现有的基于估算器的方法将体系结构编码为潜在空间,而无需考虑图形相似性。忽略基于节点的搜索空间中的图形相似性可能会引起相似的图与它们在连续编码空间中的距离之间的巨大不一致,从而导致编码不准确的代表和/或减小表示能力,从而产生了次优搜索结果。为了保留编码中的图形相关信息,我们提出了通过图嵌入方法来代表神经体系结构搜索的NASGEM。 Nasgem是由具有相似性度量的新型图嵌入方法驱动的,可以捕获图形拓扑信息。通过精确估计图形距离并使用辅助Weisfeiler-Lehman内核来指导编码,Nasgem可以利用其他结构信息来获得更准确的图表表示以提高搜索效率。 Gemnet是由Nasgem发现的一组网络,一致比分类任务中现有搜索方法制作的网络始终优于网络,即精度高0.4%-3.6%,而多重蓄能率少11%-21%。我们进一步转移了Gemnet进行可可对象检测。在一阶段和两阶段的探测器中,我们的Gemnet都超过了其手动制作和自动搜索的对应物。
Neural Architecture Search (NAS) automates and prospers the design of neural networks. Estimator-based NAS has been proposed recently to model the relationship between architectures and their performance to enable scalable and flexible search. However, existing estimator-based methods encode the architecture into a latent space without considering graph similarity. Ignoring graph similarity in node-based search space may induce a large inconsistency between similar graphs and their distance in the continuous encoding space, leading to inaccurate encoding representation and/or reduced representation capacity that can yield sub-optimal search results. To preserve graph correlation information in encoding, we propose NASGEM which stands for Neural Architecture Search via Graph Embedding Method. NASGEM is driven by a novel graph embedding method equipped with similarity measures to capture the graph topology information. By precisely estimating the graph distance and using an auxiliary Weisfeiler-Lehman kernel to guide the encoding, NASGEM can utilize additional structural information to get more accurate graph representation to improve the search efficiency. GEMNet, a set of networks discovered by NASGEM, consistently outperforms networks crafted by existing search methods in classification tasks, i.e., with 0.4%-3.6% higher accuracy while having 11%- 21% fewer Multiply-Accumulates. We further transfer GEMNet for COCO object detection. In both one-stage and twostage detectors, our GEMNet surpasses its manually-crafted and automatically-searched counterparts.