论文标题
色带复合物的描述性固定集属性
Descriptive Fixed Set Properties for Ribbon Complexes
论文作者
论文摘要
本文介绍了描述性固定集及其属性,以在平面色带复合体的背景下观看的描述性接近空间中。这些固定集是描述性近端连续地图的副产品,该图生成了固定子集,最终固定子集和地图的几乎固定子集。对于描述性连续地图$ f $在描述性接近空间$ x $上,如果$ f(a)$的描述匹配$ a $的删除,则$ x $ $ x $是固定的。用CW空间中的带状络合物术语,色带的Abelian组表示是日间的,并且每个符合的色带都有一个固定点。本文的主要结果是,如果$ h $是地图$ f,g $之间的近端描述性结合,那么如果$ a $是$ f $的[普通,最终,几乎]的固定子集,则$ h(a)$是$ g $的描述性固定子集。
This article introduces descriptive fixed sets and their properties in descriptive proximity spaces viewed in the context of planar ribbon complexes. These fixed sets are a byproduct of descriptive proximally continuous maps that spawn fixed subsets, eventual fixed subsets and almost fixed subsets of the maps. For descriptive continuous map $f$ on a descriptive proximity space $X$, a subset $A$ of $X$ is fixed, provided the description of $f(A)$ matches the desription of $A$. In terms ribbon complexes in a CW space, an Abelian group representation of a ribbon is Day-amenable and each amenable ribbon has a fixed point. A main result in this paper is that if $h$ is a proximal descriptive conjugacy between maps $f,g$, then if $A$ is an [ordinary, eventual, almost] descriptively fixed subset of $f$, then $h(A)$ is a descriptively fixed subset of $g$.