论文标题

量子风扇淘汰:电路优化和技术建模

Quantum Fan-out: Circuit Optimizations and Technology Modeling

论文作者

Gokhale, Pranav, Koretsky, Samantha, Huang, Shilin, Majumder, Swarnadeep, Drucker, Andrew, Brown, Kenneth R., Chong, Frederic T.

论文摘要

指令调度是量子计算中的关键编译器优化,就像用于古典计算一样。当前的调度程序通过允许同时执行指令来优化数据并行性,只要其量子不重叠即可。但是,在许多量子硬件平台上,可以通过__ Global Interactions __可以同时执行重叠Qubits的说明。例如,虽然传统量子电路中的风扇淘汰只能在逻辑层面上依次实现,但物理级别的全局交互允许一步一步实现风扇。我们利用这种同时的风扇原始性来优化NISQ(嘈杂的中等规模量子)工作负载的电路合成。此外,我们基于风扇介绍了新颖的量子记忆体系结构。 我们的工作还解决了粉丝原始的硬件实现。我们为被困的离子量子计算机执行逼真的模拟。我们还证明了通过超导Qubits的粉丝出现的实验概念证明。我们在逼真的噪声模型下对NISQ应用电路和量子存储器体系结构执行深度(运行时)和保真度估计。我们的模拟表明了有希望的结果,在运行时具有渐近优势,误差降低了7--24%。

Instruction scheduling is a key compiler optimization in quantum computing, just as it is for classical computing. Current schedulers optimize for data parallelism by allowing simultaneous execution of instructions, as long as their qubits do not overlap. However, on many quantum hardware platforms, instructions on overlapping qubits can be executed simultaneously through __global interactions__. For example, while fan-out in traditional quantum circuits can only be implemented sequentially when viewed at the logical level, global interactions at the physical level allow fan-out to be achieved in one step. We leverage this simultaneous fan-out primitive to optimize circuit synthesis for NISQ (Noisy Intermediate-Scale Quantum) workloads. In addition, we introduce novel quantum memory architectures based on fan-out. Our work also addresses hardware implementation of the fan-out primitive. We perform realistic simulations for trapped ion quantum computers. We also demonstrate experimental proof-of-concept of fan-out with superconducting qubits. We perform depth (runtime) and fidelity estimation for NISQ application circuits and quantum memory architectures under realistic noise models. Our simulations indicate promising results with an asymptotic advantage in runtime, as well as 7--24% reduction in error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源