论文标题

$ u(1)$量学理论的路径优化具有复杂的参数

Path optimization for $U(1)$ gauge theory with complexified parameters

论文作者

Kashiwa, Kouji, Mori, Yuto

论文摘要

在本文中,我们应用路径优化方法来处理晶格上1+1尺寸纯$ u(1)$量规理论中的复杂参数。复杂化的参数使探索Lee-Yang Zeros成为可能,这有助于我们理解相结构,因此我们考虑了理论中的复杂耦合常数与路径优化方法。我们在路径优化方法中阐明了量规修复问题;量规固定有助于有效地优化集成路径。通过量规固定,路径优化方法可以处理复杂参数并控制符号问题。这是通过使用路径优化方法直接解决量规理论的Lee-Yang零分析的第一步。

In this article, we apply the path optimization method to handle the complexified parameters in the 1+1 dimensional pure $U(1)$ gauge theory on the lattice. Complexified parameters make it possible to explore the Lee-Yang zeros which helps us to understand the phase structure and thus we consider the complex coupling constant with the path optimization method in the theory. We clarify the gauge fixing issue in the path optimization method; the gauge fixing helps to optimize the integration path effectively. With the gauge fixing, the path optimization method can treat the complex parameter and control the sign problem. It is the first step to directly tackle the Lee-Yang zero analysis of the gauge theory by using the path optimization method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源