论文标题
通过神经SDES的强大定价和对冲
Robust pricing and hedging via neural SDEs
论文作者
论文摘要
数学建模在金融业无处不在,并推动了关键的决策过程。任何给定的模型仅提供对现实的粗略近似,并且很难检测和量化使用不充分模型的风险。相比之下,现代数据科学技术正在通向更健壮和数据驱动的模型选择机制。但是,大多数机器学习模型都是“黑框”,因为各个参数没有有意义的解释。本文的目的是结合上述方法实现两全其美的方法。将神经网络与基于经典随机微分方程(SDE)的风险模型相结合,在合并相关的市场数据的同时,我们发现了衍生品价格和相应的对冲策略的强大界限。所得的称为神经SDE的模型是生成模型的实例化,与因果最佳转运理论紧密相关。神经SDE允许在风险中性和现实世界中的措施下进行一致的校准。因此,该模型可用于模拟评估风险概况和对冲策略所需的市场情况。我们开发和分析有效利用神经SDE所需的新算法。我们使用局部和随机波动率模型通过数值实验来验证我们的方法。
Mathematical modelling is ubiquitous in the financial industry and drives key decision processes. Any given model provides only a crude approximation to reality and the risk of using an inadequate model is hard to detect and quantify. By contrast, modern data science techniques are opening the door to more robust and data-driven model selection mechanisms. However, most machine learning models are "black-boxes" as individual parameters do not have meaningful interpretation. The aim of this paper is to combine the above approaches achieving the best of both worlds. Combining neural networks with risk models based on classical stochastic differential equations (SDEs), we find robust bounds for prices of derivatives and the corresponding hedging strategies while incorporating relevant market data. The resulting model called neural SDE is an instantiation of generative models and is closely linked with the theory of causal optimal transport. Neural SDEs allow consistent calibration under both the risk-neutral and the real-world measures. Thus the model can be used to simulate market scenarios needed for assessing risk profiles and hedging strategies. We develop and analyse novel algorithms needed for efficient use of neural SDEs. We validate our approach with numerical experiments using both local and stochastic volatility models.