论文标题
强烈镜头SN Refsdal:基于超新星爆炸模型的精炼时间延迟
Strongly lensed SN Refsdal: refining time delays based on the supernova explosion models
论文作者
论文摘要
我们探讨了超新星(SN)“ refsdal”的性质 - 首先发现的重力镜头SN具有多个图像。银河尺度镜头提供的大放大倍数增强了集群镜头,这为我们提供了一个独特的机会,可以在z = 1.5时对遥远的SN进行详细的建模。 我们提出了SN Refsdal的辐射流体动力学建模的结果。根据我们的计算,SN参考祖先可能是SN 1987a的更大和充满活力的版本,即具有以下参数的蓝色超级恒星:祖细胞半径$ r_0 =(50 \ pm 1)r _ {\ odot} $ $^{56} $ ni Mass $ M _ {^{56} \ Mathrm {ni}} =(0.26 \ pm 0.05)\,m _ {\ odot} $,总能量释放$ SN光曲线的重建使我们能够获得图像S2-S4相对于S1的时间延迟和高音,其精度高于Rodney \&et al的先前基于模板的估计。 (2016)。测得的时间延迟为$Δt_{s2-s1} = 9.5^{+2.6} _ { - 2.7} $ days,$Δt_{s3-s1} = 4.2^{+2.3} _ { - 2.3} _ { - 2.3} $ days $获得的放大率为$μ_{S2/S1} = 1.14 \ PM 0.02 $,$μ__{S3/S1} = 1.01 \ PM 0.02 $,和$μ__{S4/S1} = 0.35 \ pm 0.02 $。我们估计哈勃常数$ h_0 = 68.6^{+13.6} _ { - 9.7} $ km s $ s $^{ - 1} $ mpc $^{ - 1} $,通过重新缩放时间延迟的时间延迟,由不同的镜头模型预测,以匹配此工作中获得的值。借助第五张SX上的更多光度数据,我们将能够进一步完善SX的时间延迟和放大估计,并在$ H_0 $上获得竞争约束。
We explore the properties of supernova (SN) "Refsdal" - the first discovered gravitationally lensed SN with multiple images. A large magnification provided by the galactic-scale lens, augmented by the cluster lens, gave us a unique opportunity to perform a detailed modelling of a distant SN at z=1.5. We present results of radiation hydrodynamics modelling of SN Refsdal. According to our calculations, the SN Refsdal progenitor is likely to be a more massive and energetic version of SN 1987A, i.e. a blue supergiant star with the following parameters: the progenitor radius $R_0 = (50 \pm 1) R_{\odot}$, the total mass $M_{tot}= (25\pm 2) M_{\odot}$, the radioactive $^{56}$Ni mass $M_{^{56}\mathrm{Ni}} = (0.26 \pm 0.05) \,M_{\odot}$, and the total energy release $E_{burst}=(4.7 \pm 0.8)\times10^{51}$ erg. Reconstruction of SN light curves allowed us to obtain time delays and magnifications for the images S2-S4 relative to S1 with higher accuracy than previous template-based estimates of Rodney \& et al. (2016). The measured time delays are $Δt_{S2-S1} = 9.5^{+2.6}_{-2.7} $ days, $Δt_{S3-S1} = 4.2^{+2.3}_{-2.3} $ days, and $Δt_{S4-S1} = 30^{+7.8}_{-8.2} $ days. The obtained magnification ratios are $μ_{S2/S1}= 1.14 \pm 0.02$, $μ_{S3/S1} = 1.01 \pm 0.02 $, and $μ_{S4/S1} = 0.35\pm 0.02$. We estimate the Hubble constant $H_0 = 68.6^{+13.6}_{-9.7}$ km s$^{-1}$ Mpc$^{-1}$ via re-scaling the time delays predicted by different lens models to match the values obtained in this work. With more photometric data on the fifth image SX, we will be able to further refine the time delay and magnification estimates for SX and obtain competitive constraints on $H_0$.