论文标题
二进制随机过滤:特征选择及以后
Binary Stochastic Filtering: feature selection and beyond
论文作者
论文摘要
特征选择是了解数据和机器学习模型的最具决定性的工具之一。在其他方法中,由$ l^{1} $惩罚引起的稀疏性是解决此问题的最简单,最好的方法之一。尽管这种正则化经常在神经网络中用于实现权重或单位激活的稀疏性,但尚不清楚如何在功能选择问题中使用它。这项工作旨在通过重新思考如何使用稀疏正则化来扩展具有自动选择功能的神经网络,即通过随机惩罚特征参与而不是层权重来使用稀疏性。与几种经典方法相比,所提出的方法证明了效率较高,这些方法的效率最小或没有计算开销,并且可以直接应用于任何现有的体系结构。此外,该方法易于推广用于神经元修剪和光谱数据重要性区域的选择。
Feature selection is one of the most decisive tools in understanding data and machine learning models. Among other methods, sparsity induced by $L^{1}$ penalty is one of the simplest and best studied approaches to this problem. Although such regularization is frequently used in neural networks to achieve sparsity of weights or unit activations, it is unclear how it can be employed in the feature selection problem. This work aims at extending the neural network with ability to automatically select features by rethinking how the sparsity regularization can be used, namely, by stochastically penalizing feature involvement instead of the layer weights. The proposed method has demonstrated superior efficiency when compared to a few classical methods, achieved with minimal or no computational overhead, and can be directly applied to any existing architecture. Furthermore, the method is easily generalizable for neuron pruning and selection of regions of importance for spectral data.