论文标题

在具有密度链路图的超图中的哈密顿周期上

On Hamiltonian cycles in hypergraphs with dense link graphs

论文作者

Polcyn, Joanna, Reiher, Christian, Rödl, Vojtěch, Schülke, Bjarne

论文摘要

我们表明,$ n $ n $顶点上的每一个$ k $均匀的超图,其最低$ $(k-2)$ - 学位至少为$(5/9+o(1))n^2/2 $包含一个汉密尔顿周期。由于汉和赵而引起的结构表明,这种最低度条件是最佳的。 Lang和Sahueza-Matamala独立证明了相同的结果。

We show that every $k$-uniform hypergraph on $n$ vertices whose minimum $(k-2)$-degree is at least $(5/9+o(1))n^2/2$ contains a Hamiltonian cycle. A construction due to Han and Zhao shows that this minimum degree condition is optimal. The same result was proved independently by Lang and Sahueza-Matamala.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源