论文标题

在Clifford Unitaries的随机时间周期量子电路中混合和定位

Mixing and localisation in random time-periodic quantum circuits of Clifford unitaries

论文作者

Farshi, Tom, Toniolo, Daniele, González-Guillén, Carlos E., Alhambra, Álvaro M., Masanes, Lluis

论文摘要

局部和时间周期性的动力学类似于随机统一的多少?在目前的工作中,我们通过使用量子计算中的Clifford形式主义来解决这个问题。我们分析了一个无序模型,其特征是一个空间维度中的局部,时间周期性的随机量子电路。我们观察到,进化操作员有时会享受一个额外的对称性,而对称性则是该时期的半英尺倍数。这样我们证明了在争夺时间之后,即,当整个系统中的任何初始扰动都传播时,当所有量子器都用Pauli操作员测量时,就无法将进化操作员与(HAAR)随机统一区分开。随着时间的推移,这种不可区分的性会降低,这与(时间依赖性)随机电路的情况更为高。我们还证明,保利操作员的演变显示了一种混合形式。这些结果要求局部子系统的维度很大。在相反的方向上,我们的系统显示了一种新型的定位形式,该定位形式是由有效的单方面壁的出现产生的,从而防止扰动朝着一个方向而不是另一个方向越过壁。

How much does local and time-periodic dynamics resemble a random unitary? In the present work we address this question by using the Clifford formalism from quantum computation. We analyse a Floquet model with disorder, characterised by a family of local, time-periodic, random quantum circuits in one spatial dimension. We observe that the evolution operator enjoys an extra symmetry at times that are a half-integer multiple of the period. With this we prove that after the scrambling time, namely when any initial perturbation has propagated throughout the system, the evolution operator cannot be distinguished from a (Haar) random unitary when all qubits are measured with Pauli operators. This indistinguishability decreases as time goes on, which is in high contrast to the more studied case of (time-dependent) random circuits. We also prove that the evolution of Pauli operators displays a form of mixing. These results require the dimension of the local subsystem to be large. In the opposite regime our system displays a novel form of localisation, produced by the appearance of effective one-sided walls, which prevent perturbations from crossing the wall in one direction but not the other.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源