论文标题

非线性地图保存了混合的Jordan Triple $η$ - $*$ - 因素之间的产品

Nonlinear maps preserving the mixed Jordan triple $η$-$*$-product between factors

论文作者

Zhang, Fangjuan

论文摘要

令$ \ MATHCAL {A} $和$ \ MATHCAL {B} $为两个因子Von Neumann代数,而$η$为非零的复数数字。已经证明了非线性射击$ ϕ:\ Mathcal A \ Mathcal a \ Mathcal b $满足$$ ϕ([a,b] _ {*}^}^}^η\diamond_ηc)= [ac(a),ϕ(a),ϕ(b),ϕ(b)]答:$如果$η= 1,$,则$ ϕ $是线性$*$ - 同构,共轭线性$*$ - 同构,是线性$*$ - 同构的否定,或者是共轭线性$*$ - 同构的负数。如果$η\ neq 1 $且满足$ ϕ(i)= 1,则$ ϕ $是线性$*$ - 同构和偶联的线性$*$ - 同构。

Let $\mathcal{A}$ and $\mathcal{B}$ be two factor von Neumann algebras and $η$ be a non-zero complex number. A nonlinear bijective map $ϕ:\mathcal A\rightarrow\mathcal B$ has been demonstrated to satisfy $$ϕ([A,B]_{*}^η\diamond_η C)=[ϕ(A),ϕ(B)]_{*}^η\diamond_ηϕ(C)$$ for all $A,B,C\in\mathcal A.$ If $η=1,$ then $ϕ$ is a linear $*$-isomorphism, a conjugate linear $*$-isomorphism, the negative of a linear $*$-isomorphism, or the negative of a conjugate linear $*$-isomorphism. If $η\neq 1$ and satisfies $ϕ(I)=1,$ then $ϕ$ is either a linear $*$-isomorphism or a conjugate linear $*$-isomorphism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源