论文标题

学习效率与处理:迈向多任务的规范理论

Efficiency of learning vs. processing: Towards a normative theory of multitasking

论文作者

Sagiv, Yotam, Musslick, Sebastian, Niv, Yael, Cohen, Jonathan D.

论文摘要

对人类认知的惊人局限性是我们无法同时执行某些任务。最近的工作表明,这种限制可能是由于网络体系结构的基本权衡而产生的,而网络体系结构的基本权衡是由任务之间的表示形式共享所驱动的:共享促进更快的学习,而牺牲了干扰,同时多任务处理。从这个角度来看,多任务失败可能反映了对学习效率而不是多任务功能的偏爱。我们通过制定理想的贝叶斯代理来探讨这一假设,该贝叶斯代理通过学习任务集的共享或单独表示,从而最大程度地提高了预期奖励。我们调查了代理的行为,并表明在大量参数上,代理人牺牲了长期的最优性(更高的多任务处理能力),以获得短期奖励(更快的学习)。此外,我们构建了一个一般的数学框架,在该框架中,可以检查学习速度和处理效率之间的合理选择,以了解各种不同的任务环境。

A striking limitation of human cognition is our inability to execute some tasks simultaneously. Recent work suggests that such limitations can arise from a fundamental tradeoff in network architectures that is driven by the sharing of representations between tasks: sharing promotes quicker learning, at the expense of interference while multitasking. From this perspective, multitasking failures might reflect a preference for learning efficiency over multitasking capability. We explore this hypothesis by formulating an ideal Bayesian agent that maximizes expected reward by learning either shared or separate representations for a task set. We investigate the agent's behavior and show that over a large space of parameters the agent sacrifices long-run optimality (higher multitasking capacity) for short-term reward (faster learning). Furthermore, we construct a general mathematical framework in which rational choices between learning speed and processing efficiency can be examined for a variety of different task environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源