论文标题

vector Field for vector field的不可总结模块lie代数为$ \ mathbb {s}^1 \ times \ times \ mathbb {c} $

Irreducible Jet modules for the vector field Lie algebra on $\mathbb{S}^1\times \mathbb{C}$

论文作者

Niu, Mengnan, Liu, Genqiang

论文摘要

对于$ \ mathbb {c} $上的交换代数$ a $ a $ a $,表示$ \ mathfrak {g} = \ text {der}(a)$。 Smash产品$ A \#U(\ Mathfrak {G})$的模块称为JET $ \ Mathfrak {G} $ - 模块,其中$ u(\ Mathfrak {G})$是通用的通用代数,$ \ m athfrak {g} $。 $ a = \ mathbb {c} [t_1^{\ pm 1},t_2] $。我们表明$ a \ #u(\ m athfrak {g} {g})\ cong \ cong \ mathcal {d} \ otimes u(l) $ \ mathbb {c} [t_1^{\ pm 1},t_2,\ frac {\ partial} {\ partial t_1},\ frac {\ partial} {\ partial} {\ partial t_2}}] $,$ l $是$ a \ a \ a \ a \ a \ a \ a \ a \ a \ a \ a \ n op a \ a \ u(\ a \ a)代数对应于$ \ Mathfrak {g} $。使用lie代数同构$θ:l \ rightarrow \ Mathfrak \ Mathfrak {m} _ {1,0}Δ$,$ \ m athfrak {m m athfrak {m} _ {1,0} _ {1,0}Δ$ $不可还原的有限尺寸$ L $ -MODULE是不可约$ \ Mathfrak {gl} _2 $ -MODULE的同构。作为应用程序,我们在$ \ mathfrak {g} $上具有均匀界限的重量空间的张量产品实现。

For a commutative algebra $A$ over $\mathbb{C}$,denote $\mathfrak{g}=\text{Der}(A)$. A module over the smash product $A\# U(\mathfrak{g})$ is called a jet $\mathfrak{g}$-module, where $U(\mathfrak{g})$ is the universal enveloping algebra of $\mathfrak{g}$.In the present paper, we study jet modules in the case of $A=\mathbb{C}[t_1^{\pm 1},t_2]$.We show that $A\#U(\mathfrak{g})\cong\mathcal{D}\otimes U(L)$, where $\mathcal{D}$ is the Weyl algebra $\mathbb{C}[t_1^{\pm 1},t_2, \frac{\partial}{\partial t_1},\frac{\partial}{\partial t_2}]$, and $L$ is a Lie subalgebra of $A\# U(\mathfrak{g})$ called the jet Lie algebra corresponding to $\mathfrak{g}$.Using a Lie algebra isomorphism $θ:L \rightarrow \mathfrak{m}_{1,0}Δ$, where $\mathfrak{m}_{1,0}Δ$ is the subalgebra of vector fields vanishing at the point $(1,0)$, we show that any irreducible finite dimensional $L$-module is isomorphic to an irreducible $\mathfrak{gl}_2$-module. As an application, we give tensor product realizations of irreducible jet modules over $\mathfrak{g}$ with uniformly bounded weight spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源