论文标题
测试孩子与模拟的互相关红移
Testing KiDS cross-correlation redshifts with simulations
论文作者
论文摘要
测量广场成像调查中的宇宙剪切需要准确了解所有来源的红移分布。聚类 - 红移技术利用了目标星系样品的角度互相关,并具有未知的红移和带有已知红移的参考样品,并且是基于颜色的红移校准方法的有吸引力的替代方法。我们使用类似于Kilo-Degree调查(KIDS)的模拟目录测试了这种聚类红移测量的性能。这些模拟是由小鼠模拟创建的,并密切模仿了儿童源样本和重叠的光谱参考样本的性质。我们通过将互相关结果与五个儿童光度红移箱中每个中的每个红移分布进行比较来量化聚类红移的性能。由于在高红移处的参考样本不完整,因此需要与信息性模型进行比较。在这些条件下,聚类平均红移在$ |Δz| <0.006 $中是公正的。使用自动相关测量和自谐关系,可以在此精确度上可靠地缓解星系偏差的红移演化,直到阶段IV阶段宇宙剪切验调查到达之前,才能成为系统误差的主要来源。使用来自基于直接颜色的估计的红移分布,而不是真正的红移分布作为与聚类红移进行比较的模型,这会增加平均值的偏见至最高$ | |ΔZ| \ sim0.04 $。这表明将来需要对红移分布的更复杂的(参数化)模型的聚类红移的解释。如果有这样的更好的模型,聚类 - 红移技术有望成为其他红移校准方法的高度互补替代方法。
Measuring cosmic shear in wide-field imaging surveys requires accurate knowledge of the redshift distribution of all sources. The clustering-redshift technique exploits the angular cross-correlation of a target galaxy sample with unknown redshifts and a reference sample with known redshifts, and is an attractive alternative to colour-based methods of redshift calibration. We test the performance of such clustering redshift measurements using mock catalogues that resemble the Kilo-Degree Survey (KiDS). These mocks are created from the MICE simulation and closely mimic the properties of the KiDS source sample and the overlapping spectroscopic reference samples. We quantify the performance of the clustering redshifts by comparing the cross-correlation results with the true redshift distributions in each of the five KiDS photometric redshift bins. Such a comparison to an informative model is necessary due to the incompleteness of the reference samples at high redshifts. Clustering mean redshifts are unbiased at $|Δz|<0.006$ under these conditions. The redshift evolution of the galaxy bias can be reliably mitigated at this level of precision using auto-correlation measurements and self-consistency relations, and will not become a dominant source of systematic error until the arrival of Stage-IV cosmic shear surveys. Using redshift distributions from a direct colour-based estimate instead of the true redshift distributions as a model for comparison with the clustering redshifts increases the biases in the mean to up to $|Δz|\sim0.04$. This indicates that the interpretation of clustering redshifts in real-world applications will require more sophisticated (parameterised) models of the redshift distribution in the future. If such better models are available, the clustering-redshift technique promises to be a highly complementary alternative to other methods of redshift calibration.