论文标题
Lindelöf空间的星级版本
Star versions of Lindelöf spaces
论文作者
论文摘要
如果对于每个非公开子集$ a $ x $的$ x $ a $ a $ a $ a $ a $ a $ a $ a $ a $ x $和每个集合的$ \ mathcal {u} $,则可以将一个空间$ x $设置为star-lindelöf(resp。 \ Mathcal {V} $ of $ \ MATHCAL {u} $(resp。,可计数的子集$ f $ of $ \ overline {a} $),以至于$ a \ subseteq {\ subseteq {\ rm st}(\ bigcup \ bigCup \ mathcal \ Mathcal {v},\ Mathcal {v},\ Mathcal {\ nathcal {u} $(qust} f,\ Mathcal {u})$)。 Set-lindelöf空间的套装类别,并在LindelöfSpace的类别和Star-Lindelöf空间等级之间进行了强烈的Star-Lindelöf空间。在本文中,我们通过提供一些合适的例子并研究Set Star-Lindelöf的拓扑特性并将Star-Lindelöf的拓扑特性和设置强烈的Star-Lindelöf空间研究,调查了Set-Lindelöf空间,固定的Star-Lindelöf空间和其他相关空间之间的关系。
A space $ X $ is said to be set star-Lindelöf (resp., set strongly star-Lindelöf) if for each nonempty subset $ A $ of $ X $ and each collection $ \mathcal{U} $ of open sets in $ X $ such that $ \overline{A} \subseteq \bigcup \mathcal{U} $, there is a countable subset $ \mathcal{V}$ of $ \mathcal{U} $ (resp., countable subset $ F $ of $ \overline{A} $) such that $ A \subseteq {\rm St}( \bigcup \mathcal{V}, \mathcal{U})$ (resp., $ A \subseteq {\rm St}( F, \mathcal{U})$). The classes of set star-Lindelöf spaces and set strongly star-Lindelöf spaces lie between the class of Lindelöf spaces and the class of star-Lindelöf spaces. In this paper, we investigate the relationship among set star-Lindelöf spaces, set strongly star-Lindelöf spaces, and other related spaces by providing some suitable examples and study the topological properties of set star-Lindelöf and set strongly star-Lindelöf spaces.