论文标题
耐力toeplitz $ c^*$ - 代数的刚性结果
Rigidity results for automorphisms of Hardy-Toeplitz $C^*$-algebras
论文作者
论文摘要
我们证明了许多结果是关于硬to toeplitz代数$ \ MATHCAL {t}(t}(d)$之间与有限的对称域$ d $相关的稳定等质的$ \ \ nathcal {t} $ d $的稳定等质的类别的结果,该稳定的同态类别$ n ys done n done n done Rede( $ d = d_1 \ times \ cdots \ times d_s $ shilov边界$ \ check {s}(d)$由$ \ mathcal {t}(t)(d)$引起的$ \ check {s}(d_i)$的shilov burnies $ \ mathcal {t}(d)$引起的仲裁$,以及仲裁的solv solv bornve $ \ Mathcal {t}(d)$在其角色空间上微不足道的$ \ check {s}(d)$在整个频谱$ \ wideHat {\ Mathcal {t}(t}(d)} $上都是微不足道的。
We prove a number of results on the automorphisms of and isomorphisms between Hardy-Toeplitz algebras $\mathcal{T}(D)$ associated to bounded symmetric domains $D$: that the stable isomorphism class of $\mathcal{T}(D)$ determines $D$ (even when it is reducible), that for reducible domains $D=D_1\times\cdots \times D_s$ the automorphisms of the Shilov boundary $\check{S}(D)$ induced by those of $\mathcal{T}(D)$ permute the Shilov boundaries $\check{S}(D_i)$, and that by contrast to arbitrary solvable algebras, automorphisms of $\mathcal{T}(D)$ that are trivial on their character spaces $\check{S}(D)$ are trivial on the entire spectrum $\widehat{\mathcal{T}(D)}$.