论文标题

结构方程模型的可证实有效的神经估计:一种对抗方法

Provably Efficient Neural Estimation of Structural Equation Model: An Adversarial Approach

论文作者

Liao, Luofeng, Chen, You-Lin, Yang, Zhuoran, Dai, Bo, Wang, Zhaoran, Kolar, Mladen

论文摘要

结构方程模型(SEM)被广泛用于科学中,从经济学到心理学,再到正在考虑的复杂系统和估计感兴趣的结构参数的基础的因果关系。我们研究了一类广义SEM的估计,其中感兴趣的对象被定义为线性操作员方程的解决方案。我们将线性操作员方程式制定为最小游戏游戏,在该游戏中,两个玩家都由神经网络(NNS)参数化,并使用随机梯度下降来学习这些神经网络的参数。我们考虑具有relu激活函数的2层和多层NNS,并在神经元数量分歧的情况下证明了全局收敛。结果是使用NNS的在线学习和本地线性化的技术建立的,并在当前最新的几个方面改进。我们首次基于具有可证明的收敛性的NN,而无需样品分割的NN提供了可进行的估计程序。

Structural equation models (SEMs) are widely used in sciences, ranging from economics to psychology, to uncover causal relationships underlying a complex system under consideration and estimate structural parameters of interest. We study estimation in a class of generalized SEMs where the object of interest is defined as the solution to a linear operator equation. We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using the stochastic gradient descent. We consider both 2-layer and multi-layer NNs with ReLU activation functions and prove global convergence in an overparametrized regime, where the number of neurons is diverging. The results are established using techniques from online learning and local linearization of NNs, and improve in several aspects the current state-of-the-art. For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源