论文标题
网络上随机SIS流行病的PDE限制
PDE-limits of stochastic SIS epidemics on networks
论文作者
论文摘要
网络上的随机流行模型本质上是高维的,并且所得的精确模型在数值上甚至对于适度的网络尺寸也很棘手。平均场模型提供了一种替代方案,但只能捕获平均数量,因此几乎没有或根本没有有关确切过程结果可变性的信息。在本文中,我们猜想并数值证明可以在常规和Erdős-rényi网络上构建确切的随机SIS流行病的PDE限制。为此,我们首先通过出生和死亡过程(BD)($ O(n)$而不是$ O(2^n)$的状态空间)首先近似人口级别的确切随机过程,其系数是从吉莱斯皮(Gillespie of)从吉莱斯皮(Gillespie of)确切的明确网络中的吉莱斯皮模拟中确定的。我们从数值上证明,所得BD过程的系数是密度依赖性的,这是PDE极限存在的关键条件。常规和ERDőS-Rényi网络的广泛数值测试在模拟结果与Fokker-Planck方程的数值解决方案之间表现出极好的一致性。除了大大降低维度外,PDE还提供了能够得出流行病爆发阈值网络和疾病动态参数的手段,尽管它是一种隐式的方式。也许更重要的是,它可以实现对流行病和网络推断的可能性的制定和数值评估,如循序渐进的示例所示。
Stochastic epidemic models on networks are inherently high-dimensional and the resulting exact models are intractable numerically even for modest network sizes. Mean-field models provide an alternative but can only capture average quantities, thus offering little or no information about variability in the outcome of the exact process. In this paper we conjecture and numerically prove that it is possible to construct PDE-limits of the exact stochastic SIS epidemics on regular and Erdős-Rényi networks. To do this we first approximate the exact stochastic process at population level by a Birth-and-Death process (BD) (with a state space of $O(N)$ rather than $O(2^N)$) whose coefficients are determined numerically from Gillespie simulations of the exact epidemic on explicit networks. We numerically demonstrate that the coefficients of the resulting BD process are density-dependent, a crucial condition for the existence of a PDE limit. Extensive numerical tests for Regular and Erdős-Rényi networks show excellent agreement between the outcome of simulations and the numerical solution of the Fokker-Planck equations. Apart from a significant reduction in dimensionality, the PDE also provides the means to derive the epidemic outbreak threshold linking network and disease dynamics parameters, albeit in an implicit way. Perhaps more importantly, it enables the formulation and numerical evaluation of likelihoods for epidemic and network inference as illustrated in a worked out example.