论文标题
混合地标的Aalen-Johansen估计量,用于部分非Markov多状态模型中的过渡概率
A hybrid landmark Aalen-Johansen estimator for transition probabilities in partially non-Markov multi-state models
论文作者
论文摘要
随着时间的流逝,多州模型越来越多地用于模拟复杂的流行病学和临床结果。通常,假设模型是马尔可夫,但是假设通常是不现实的。马尔可夫的假设很少被检查,违规行为可能导致许多感兴趣的参数估计。正如Datta和Satten(2001)所论证的那样,在非马尔科夫案中,Aalen-Johansen的职业概率估计量也是一致的。 Putter和Spitoni(2018)利用这一事实来构建一个一致的国家过渡概率的估计器,这是标志性的Aalen-Johansen估计器,该估计量不依赖Markov的假设。地标的缺点是减少数据,导致功率损失。对于较少的旅行过渡而言,这是有问题的,当这种过渡确实表现出马尔可夫行为时,这是不可取的。使用部分非Markov多状态模型的框架,我们建议使用混合地标Aalen-Johansen估计器来实现过渡概率。提出的估计量是使用特定特定地标在常规的Aalen-Johansen和地标估计之间的妥协,并且可以大大改善统计能力。在仿真研究和实际数据应用程序中比较了这些方法,该方法对病假,残疾,教育,工作和失业状态之间的个人过渡建模。在申请中,使用来自国家注册表的数据,从21岁开始,从21岁开始就跟踪了184951年的挪威男性的出生队列。
Multi-state models are increasingly being used to model complex epidemiological and clinical outcomes over time. It is common to assume that the models are Markov, but the assumption can often be unrealistic. The Markov assumption is seldomly checked and violations can lead to biased estimation for many parameters of interest. As argued by Datta and Satten (2001), the Aalen-Johansen estimator of occupation probabilities is consistent also in the non-Markov case. Putter and Spitoni (2018) exploit this fact to construct a consistent estimator of state transition probabilities, the landmark Aalen-Johansen estimator, which does not rely on the Markov assumption. A disadvantage of landmarking is data reduction, leading to a loss of power. This is problematic for less traveled transitions, and undesirable when such transitions indeed exhibit Markov behaviour. Using a framework of partially non-Markov multi-state models we suggest a hybrid landmark Aalen-Johansen estimator for transition probabilities. The proposed estimator is a compromise between regular Aalen-Johansen and landmark estimation, using transition specific landmarking, and can drastically improve statistical power. The methods are compared in a simulation study and in a real data application modelling individual transitions between states of sick leave, disability, education, work and unemployment. In the application, a birth cohort of 184951 Norwegian men are followed for 14 years from the year they turn 21, using data from national registries.