论文标题
$ gl(n,\ mathbb {r})$的狄拉克系列$
Dirac series of $GL(n, \mathbb{R})$
论文作者
论文摘要
$ gl(n,\ mathbb {r})$的统一双重偶数在1980年代被Vogan分类。专注于$ gl(N,\ Mathbb {r})$具有半综合无限字符的不可约合的统一表示,我们发现SPEH表示和特殊的单位表示形式是基础。通过查看它们的$ k $类型以及使用Blattner-type公式,我们获得了所有不可约合的单一$(\ Mathfrak {g},k)$ - 具有$ gl(n,\ mathbb {r})$的$ gl(n,\ mathb {r})$的dirac gromology的模块,以及k的$ k $ k $ k的$ k.此外,类似于[dw1]中给出的$ gl(n,\ mathbb {c})$ case,我们计算$ gl(n,\ mathbb {r})$的fs scatered表示的数量。
The unitary dual of $GL(n, \mathbb{R})$ was classified by Vogan in the 1980s. Focusing on the irreducible unitary representations of $GL(n, \mathbb{R})$ with half-integral infinitesimal characters, we find that Speh representations and the special unipotent representations are building blocks. By looking at the $K$-types of them, and by using a Blattner-type formula, we obtain all the irreducible unitary $(\mathfrak{g}, K)$-modules with non-zero Dirac cohomology of $GL(n, \mathbb{R})$, as well as a formula for (one of) their spin-lowest $K$-types. Moreover, analogous to the $GL(n,\mathbb{C})$ case given in [DW1], we count the number of the FS-scattered representations of $GL(n, \mathbb{R})$.