论文标题

不确定性引导的有效互动对MRI切片堆叠的胎儿脑分割的互动性完善

Uncertainty-Guided Efficient Interactive Refinement of Fetal Brain Segmentation from Stacks of MRI Slices

论文作者

Wang, Guotai, Aertsen, Michael, Deprest, Jan, Ourselin, Sebastien, Vercauteren, Tom, Zhang, Shaoting

论文摘要

从运动腐败的胎儿MRI切片中分割胎儿大脑对运动校正和高分辨率体积重建很重要。尽管卷积神经网络(CNN)已被广泛用于胎儿大脑的自动分割,但它们的结果仍可能受益于互动式改进,用于具有挑战性的切片。为了提高交互式改进过程的效率,我们提出了不确定性引导的交互式改进(UGIR)框架。我们首先提出一个基于卷积的CNN,以在单个正向通行中进行不确定性估计的多个自动分割预测,然后引导用户仅在不确定性最高的切片中提供相互作用。还提出了一种新颖的交互式级别集方法,以获得初始分割和用户交互,以获得精致的结果。实验结果表明:(1)我们提出的CNN实时获得了不确定性估计,这与错误分割良好相关,(2)提议的交互式水平集可以有效且有效地进行细化,(3)UGIR获得准确的细化结果,通过使用不可能指导用户互动来提高效率约30%。我们的代码可在线提供。

Segmentation of the fetal brain from stacks of motion-corrupted fetal MRI slices is important for motion correction and high-resolution volume reconstruction. Although Convolutional Neural Networks (CNNs) have been widely used for automatic segmentation of the fetal brain, their results may still benefit from interactive refinement for challenging slices. To improve the efficiency of interactive refinement process, we propose an Uncertainty-Guided Interactive Refinement (UGIR) framework. We first propose a grouped convolution-based CNN to obtain multiple automatic segmentation predictions with uncertainty estimation in a single forward pass, then guide the user to provide interactions only in a subset of slices with the highest uncertainty. A novel interactive level set method is also proposed to obtain a refined result given the initial segmentation and user interactions. Experimental results show that: (1) our proposed CNN obtains uncertainty estimation in real time which correlates well with mis-segmentations, (2) the proposed interactive level set is effective and efficient for refinement, (3) UGIR obtains accurate refinement results with around 30% improvement of efficiency by using uncertainty to guide user interactions. Our code is available online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源