论文标题

非热门安德森运输

Non-Hermitian Anderson Transport

论文作者

Weidemann, Sebastian, Kremer, Mark, Longhi, Stefano, Szameit, Alexander

论文摘要

安德森斯(Andersons)开创性的发现,即晶体中随机缺陷的存在可能会导致电导率突然崩溃彻底改变了我们对无序媒体的理解。在刺激了数十年的生动研究之后,安德森的定位发现了在物理学的各个领域,介质物理学,强烈相关的系统,光定位,腔量子量子电动力学,随机激光和物质拓扑阶段的有趣应用。但是,安德森治疗中的一个基本假设是,与环境没有任何能量与环境交换,这与常识的相反,即每个实际系统都会遭受耗散。最近,越来越多的理论研究已经解决了随着耗散的无序培养基。特别是已经预测,在这样的系统中,所有特征态都会定位,类似于安德森考虑的没有耗散的原始情况。然而,在耗散系统中,本征状分析不足以表征波的传输动力学,与Hermitian系统形成鲜明对比,在此形成鲜明对比,在此形成鲜明的对比,在此形成鲜明对比,在所有特征态的定位必然会抑制运输。在我们的工作中,我们在理论和实验中表明,尽管所有本征状态都呈指数定位,但具有耗散障碍的系统允许新型的空间运输。安德森运输的特征是超扩散蔓延和本地化状态之间的超轻型空间跳跃。我们预计我们的发现是标志着耗散媒体的新现象的起点,这些介质受到普遍的非血症疾病的影响。

Andersons groundbreaking discovery that the presence of stochastic imperfections in a crystal may result in a sudden breakdown of conductivity revolutionized our understanding of disordered media. After stimulating decades of lively studies, Anderson localization has found intriguing applications in various areas of physics, such mesoscopic physics, strongly-correlated systems, light localization, cavity quantum electrodynamics, random lasers, and topological phases of matter. However, a fundamental assumption in Andersons treatment is that no energy is exchanged with the environment, in contrast to the common knowledge that every real system is subject to dissipation. Recently, a growing number of theoretical studies has addressed disordered media with dissipation. In particular it has been predicted that in such systems all eigenstates exponentially localize, similar to the original case without dissipation that Anderson considered. However, in dissipative systems an eigenstate analysis is insufficient for characterizing the transport dynamics of wave, in stark contrast to Hermitian systems, where the localization of all eigenstates necessarily suppresses transport. In our work, we show in theory and experiment that systems with dissipative disorder allow for a new type of spatial transport, despite the fact that all eigenstates are exponentially localized. This Anderson transport is characterized by super-diffusive spreading and ultra-far spatial jumps between localized states. We anticipate our findings to mark the starting point towards novel phenomena in dissipative media, which are subject to general non-Hermitian disorder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源