论文标题

产品和线性订单空间的不变措施

Invariant measures on products and on the space of linear orders

论文作者

Jahel, Colin, Tsankov, Todor

论文摘要

令$ m $为$ \ aleph_0 $ - 分类结构,并假设$ m $没有代数,并且消除了想象力。概括了de Finetti和Ryll-Nardzewski的经典定理,我们表明,任何Ergodic,$ \ permatatorname {aut}(m)$ - $ [0,1]^m $不变的度量是产品度量。我们还调查了紧凑型空间$ \ mathrm {lo}(m)$ $ m $上的$ \ operatotorName {aut}(m)$在$ m $上的行动。如果我们假设动作$ \ operatorAtorname {aut}(m)\ curvearrowright m $是传递的,我们证明了动作$ \ operatotorname {aut}(aut}(m)\ curvearrowright \ mathrm {lo}(mathrm {lo}(m),或者是固定点,或者是固定点或独特的磨性。

Let $M$ be an $\aleph_0$-categorical structure and assume that $M$ has no algebraicity and has weak elimination of imaginaries. Generalizing classical theorems of de Finetti and Ryll-Nardzewski, we show that any ergodic, $\operatorname{Aut}(M)$-invariant measure on $[0, 1]^M$ is a product measure. We also investigate the action of $\operatorname{Aut}(M)$ on the compact space $\mathrm{LO}(M)$ of linear orders on $M$. If we assume moreover that the action $\operatorname{Aut}(M) \curvearrowright M$ is transitive, we prove that the action $\operatorname{Aut}(M) \curvearrowright \mathrm{LO}(M)$ either has a fixed point or is uniquely ergodic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源