论文标题
根据不确定标量产品定义的一组结构化矩阵中的对角矩阵的密度
Density of diagonalizable matrices in sets of structured matrices defined from indefinite scalar products
论文作者
论文摘要
对于(不确定的)标量产品$ [x,y] _b = x^hby $ for $ b = \ b = \ pm b = \ pm b^h \ in gl_n(\ mathbb {c})$ on $ \ mathbb {c}^n \ times \ times \ times \ times \ times \ mathbb {c}^n $ in n of dia $ - $ b $ -skewadjoint,$ b $ - 独立和$ b $ - 正常矩阵。
For an (indefinite) scalar product $[x,y]_B = x^HBy$ for $B= \pm B^H \in Gl_n(\mathbb{C})$ on $\mathbb{C}^n \times \mathbb{C}^n$ we show that the set of diagonalizable matrices is dense in the set of all $B$-selfadjoint, $B$-skewadjoint, $B$-unitary and $B$-normal matrices.