论文标题

通过不确定性感知模型来识别因果效应的推断失败

Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models

论文作者

Jesson, Andrew, Mindermann, Sören, Shalit, Uri, Gal, Yarin

论文摘要

推荐个人的最佳行动方案是个人级别因果效应估计的主要应用。通常需要在诸如医疗保健之类的安全领域中进行此应用,在这种情况下,对决策者的估计和传达不确定性至关重要。我们引入了一种实用方法,将不确定性估计纳入用于个人级别因果估计的一类最先进的神经网络方法。我们表明,我们的方法使我们能够优雅地处理“无重叠”的情况,这在高维数据中常见,而因果效应方法的标准应用失败了。此外,我们的方法使我们能够处理协变量的变化,在这种情况下,测试分布在训练分布方面有所不同,在实践中部署系统时常见。我们表明,当发生这种协变量的转变时,正确对不确定性进行建模可以使我们无法给出过度自信的和潜在的有害建议。我们通过一系列最先进的模型演示了我们的方法。在协变性的转变和缺乏重叠的情况下,当不信任预测的同时,我们的不确定性方法都可以提醒制定者,而在表现不佳的不确定性的同时。

Recommending the best course of action for an individual is a major application of individual-level causal effect estimation. This application is often needed in safety-critical domains such as healthcare, where estimating and communicating uncertainty to decision-makers is crucial. We introduce a practical approach for integrating uncertainty estimation into a class of state-of-the-art neural network methods used for individual-level causal estimates. We show that our methods enable us to deal gracefully with situations of "no-overlap", common in high-dimensional data, where standard applications of causal effect approaches fail. Further, our methods allow us to handle covariate shift, where test distribution differs to train distribution, common when systems are deployed in practice. We show that when such a covariate shift occurs, correctly modeling uncertainty can keep us from giving overconfident and potentially harmful recommendations. We demonstrate our methodology with a range of state-of-the-art models. Under both covariate shift and lack of overlap, our uncertainty-equipped methods can alert decisions makers when predictions are not to be trusted while outperforming their uncertainty-oblivious counterparts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源