论文标题

使用指导的降级卷积神经网络加速前列腺扩散加权MRI:回顾性可行性研究

Accelerating Prostate Diffusion Weighted MRI using Guided Denoising Convolutional Neural Network: Retrospective Feasibility Study

论文作者

Kaye, Elena A., Aherne, Emily A., Duzgol, Cihan, Häggström, Ida, Kobler, Erich, Mazaheri, Yousef, Fung, Maggie M, Zhang, Zhigang, Otazo, Ricardo, Vargas, Herbert A., Akin, Oguz

论文摘要

目的:通过减少获得的平均数量并使用拟议的指导型Denoising deNo的卷积神经网络(DNCNN)来研究加速前列腺扩散加权成像(DWI)的可行性。材料和方法:从六个单供应商MRI扫描仪中回顾了前列腺DWI扫描的原始数据(2018年7月至2019年7月之间)。 118个数据集用于培训和验证(年龄:64.3 +-8岁)和37-用于测试(年龄:65.1 + - 7.3岁)。使用两个平均值和参考图像使用所有16​​平均值,将高B值扩散加权(HB-DW)数据重建为嘈杂的图像。将常规的DNCNN修改为引导DNCNN,该DNCNN使用低B值DWI图像作为指导输入。对定量和定性的读取器评估进行了对DENO的HB-DW图像进行的评估。累积链接混合回归模型比较了读取器分数。使用Bland Altman分析分析了明显扩散系数(ADC)图(ADC)图(ADC)的一致性。结果:与DNCNN相比,引导的DNCNN产生了具有较高峰值信号 - 噪声比和结构相似性指数和较低归一化均方根误差的DeNOCON的HB-DW图像(P <0.001)。与参考图像相比,deno的图像获得了更高的图像质量得分(p <0.0001)。基于DeNo的HB-DW图像的ADC值与参考ADC值非常吻合。结论:通过减少获得的平均数量并使用所提出的指导DNCNN来加速前列​​腺DWI,在技术上是可行的。

Purpose: To investigate feasibility of accelerating prostate diffusion-weighted imaging (DWI) by reducing the number of acquired averages and denoising the resulting image using a proposed guided denoising convolutional neural network (DnCNN). Materials and Methods: Raw data from the prostate DWI scans were retrospectively gathered (between July 2018 and July 2019) from six single-vendor MRI scanners. 118 data sets were used for training and validation (age: 64.3 +- 8 years) and 37 - for testing (age: 65.1 +- 7.3 years). High b-value diffusion-weighted (hb-DW) data were reconstructed into noisy images using two averages and reference images using all sixteen averages. A conventional DnCNN was modified into a guided DnCNN, which uses the low b-value DWI image as a guidance input. Quantitative and qualitative reader evaluations were performed on the denoised hb-DW images. A cumulative link mixed regression model was used to compare the readers scores. The agreement between the apparent diffusion coefficient (ADC) maps (denoised vs reference) was analyzed using Bland Altman analysis. Results: Compared to the DnCNN, the guided DnCNN produced denoised hb-DW images with higher peak signal-to-noise ratio and structural similarity index and lower normalized mean square error (p < 0.001). Compared to the reference images, the denoised images received higher image quality scores (p < 0.0001). The ADC values based on the denoised hb-DW images were in good agreement with the reference ADC values. Conclusion: Accelerating prostate DWI by reducing the number of acquired averages and denoising the resulting image using the proposed guided DnCNN is technically feasible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源