论文标题
使用交叉验证的神经网络的共形预测间隔
Conformal Prediction Intervals for Neural Networks Using Cross Validation
论文作者
论文摘要
神经网络是用于解决监督学习问题的最强大的非线性模型之一。与大多数机器学习算法相似,神经网络会产生点预测,并且不提供任何预测间隔,该间隔包括带有指定概率的未观察到的响应值。在本文中,我们提出了基于$ k $折叠交叉验证的神经网络的$ k $折叠间隔方法,以构建神经网络的预测间隔。使用10个实际数据集的仿真研究和分析来比较提出方法和拆分保形方法产生的预测间隔的有限样本特性。结果表明,与SC方法相比,所提出的方法倾向于产生更狭窄的预测间隔,同时保持相同的覆盖率概率。我们的实验结果还表明,所提出的$ K $倍预测间隔方法会产生有效的预测间隔,并且在训练观察的数量有限时,相对于竞争方法尤其有利。
Neural networks are among the most powerful nonlinear models used to address supervised learning problems. Similar to most machine learning algorithms, neural networks produce point predictions and do not provide any prediction interval which includes an unobserved response value with a specified probability. In this paper, we proposed the $k$-fold prediction interval method to construct prediction intervals for neural networks based on $k$-fold cross validation. Simulation studies and analysis of 10 real datasets are used to compare the finite-sample properties of the prediction intervals produced by the proposed method and the split conformal (SC) method. The results suggest that the proposed method tends to produce narrower prediction intervals compared to the SC method while maintaining the same coverage probability. Our experimental results also reveal that the proposed $k$-fold prediction interval method produces effective prediction intervals and is especially advantageous relative to competing approaches when the number of training observations is limited.