论文标题

连续时间数据的G计算和双重鲁棒标准化:与逆概率加权的比较

G-computation and doubly robust standardisation for continuous-time data: a comparison with inverse probability weighting

论文作者

Chatton, A., Borgne, F. Le, Leyrat, C., Foucher, Y.

论文摘要

在事件的时间设置中,G-Compuntion和双重稳健估计器基于离散的时间数据。但是,随着时间的流逝,许多生物过程正在不断发展。在本文中,我们将G计算和双重鲁棒标准化程序扩展到连续的时间上下文。我们将它们的性能与众所周知的逆概率加权(IPW)估计量进行比较,以使用模拟研究进行危害比和限制平均生存时间差的估计。在正确的模型规范下,所有方法都是公正的,但是G委托和双重鲁棒标准化比逆概率加权更有效。我们还分析了两个现实世界数据集,以说明这些方法的实际实现。我们已经更新了R软件包Risca,以促进这些方法的使用及其传播。

In time-to-event settings, g-computation and doubly robust estimators are based on discrete-time data. However, many biological processes are evolving continuously over time. In this paper, we extend the g-computation and the doubly robust standardisation procedures to a continuous-time context. We compare their performance to the well-known inverse-probability-weighting (IPW) estimator for the estimation of the hazard ratio and restricted mean survival times difference, using a simulation study. Under a correct model specification, all methods are unbiased, but g-computation and the doubly robust standardisation are more efficient than inverse probability weighting. We also analyse two real-world datasets to illustrate the practical implementation of these approaches. We have updated the R package RISCA to facilitate the use of these methods and their dissemination.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源