论文标题
裂缝的反变形方法
The inverse-deformation approach to fracture
论文作者
论文摘要
我们提出了一个具有较高梯度的一维非凸弹性本构模型,可以通过分叉分析在临界负载下自发断裂。它克服了不连续变形的问题,而没有其他场变量,例如损坏或相位场变量,而没有先验指定的表面能。我们的主要工具是使用反变形,即使原始变形具有描述裂缝打开的不连续性,也可以扩展为分段平滑映射。我们通过盾牌和卡尔森(Carlson)引起的有限弹性(包括能量上的较高梯度)来利用这一点。在单方面约束的情况下,该问题适合进行严格的全球分叉分析。硬载下的断裂发生在临界施加的拉伸水平的分叉溶液分支上,发现断裂的溶液具有较高梯度效应引起的表面能。
We propose a one-dimensional, nonconvex elastic constitutive model with higher gradients that can predict spontaneous fracture at a critical load via a bifurcation analysis. It overcomes the problem of discontinuous deformations without additional field variables, such as damage or phase-field variables, and without a priori specified surface energy. Our main tool is the use of the inverse deformation, which can be extended to be a piecewise smooth mapping even when the original deformation has discontinuities describing cracks opening. We exploit this via the inverse-deformation formulation of finite elasticity due to Shield and Carlson, including higher gradients in the energy. The problem is amenable to a rigorous global bifurcation analysis in the presence of a unilateral constraint. Fracture under hard loading occurs on a bifurcating solution branch at a critical applied stretch level and fractured solutions are found to have surface energy arising from higher gradient effects.