论文标题

Mobius功能和一致数字

The Mobius Function and Congruent Numbers

论文作者

Burson, Roy

论文摘要

这项工作提供了毕达哥拉斯三元组的一致数字的完整表征。具体而言,我们表明每个一致的数字都可以写成$ \ frac {nm \ left(m-n \ right)\ left(m+n \ right)} {σ^2} $$如$ qutt(m-n \ weft(m-n \ right)\ weft(m+weft(m+prig), \缩号σ\vertρ(nm)$$为$ρ(α)$表示其参数的非平方自由部分$α$。因此,为了找到一致的数字,就足以设计条件,以便相等的$μ(m-n)+1 = \ gcd(m,n)$或$μ(m+n)+1 = \ gcd(m,n)$ holds,$ $ $ $ $ $ $ $ $是莫比乌斯的功能。

This work provides a complete characterization of congruent numbers in terms of Pythagorean triples. Specifically, we show that every congruent number can be written as $$\frac{nm\left(m-n\right)\left(m+n\right)}{σ^2}$$ were as $$σ\vert ρ\biggl(\left(m-n\right)\left(m+n\right)\biggr),\indent \text{or} \indent σ\vert ρ( nm )$$ were $ρ(α)$ denotes the non-square free part of its argument $α$. As a consequence, in order to find congruent numbers it suffices to devise a condition so that the equality $μ(m-n)+1 = \gcd(m,n)$ or $μ(m+n)+1 =\gcd(m,n)$ holds, were $μ$ is the Mobius function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源