论文标题
Arpege Cloud覆盖预测,预测卷积神经网络的后期处理
ARPEGE Cloud Cover Forecast Post-Processing with Convolutional Neural Network
论文作者
论文摘要
云覆盖物是许多应用程序的关键信息,例如从太空计划土地观察任务。然而,它仍然是一个充满挑战的预测变量,数值天气预测(NWP)模型具有重大偏见,因此证明使用统计后处理技术是合理的。在这项研究中,使用卷积神经网络(CNN)对Arpege(Météo-France Global NWP)进行了后处理。 CNN是处理图像的最受欢迎的机器学习工具。在我们的情况下,CNN允许整合NWP输出中包含的空间信息。我们使用从欧洲卫星观测来得出的网格云覆盖物作为地面真理,预测因子是Arpege在相应的交货时段产生的各种变量的空间场。我们表明,简单的U-NET架构对欧洲产生了重大改进。此外,U-NET在操作上使用了更多传统的机器学习方法,例如随机森林和逻辑分数回归。在传统的U-NET体系结构之前,我们引入了加权预测层,该层面是通过重要性来产生预测变量的排名,从而促进了结果的解释。使用$ n $预测变量,只训练了$ n $额外的权重,这不会影响计算时间,与传统的排名方法相比,这代表了巨大的优势(置换重要性,顺序选择,...)。
Cloud cover is crucial information for many applications such as planning land observation missions from space. It remains however a challenging variable to forecast, and Numerical Weather Prediction (NWP) models suffer from significant biases, hence justifying the use of statistical post-processing techniques. In this study, ARPEGE (Météo-France global NWP) cloud cover is post-processed using a convolutional neural network (CNN). CNN is the most popular machine learning tool to deal with images. In our case, CNN allows the integration of spatial information contained in NWP outputs. We use a gridded cloud cover product derived from satellite observations over Europe as ground truth, and predictors are spatial fields of various variables produced by ARPEGE at the corresponding lead time. We show that a simple U-Net architecture produces significant improvements over Europe. Moreover, the U-Net outclasses more traditional machine learning methods used operationally such as a random forest and a logistic quantile regression. We introduced a weighting predictor layer prior to the traditional U-Net architecture which produces a ranking of predictors by importance, facilitating the interpretation of the results. Using $N$ predictors, only $N$ additional weights are trained which does not impact the computational time, representing a huge advantage compared to traditional methods of ranking (permutation importance, sequential selection, ...).