论文标题

Parrondo悖论的领土及其与纠缠量子步行的关系

Territories of Parrondo's paradox and its relation with entanglement in quantum walks

论文作者

Jan, Munsif, Khan, Niaz Ali, Xianlong, Gao

论文摘要

Parrondo的悖论是众所周知的违反直觉现象,不利情况的结合可以建立有利的情况。在本文中,我们研究了一维离散时间量子步行步行,操纵了两个不同的硬币(两态)操作员,分别代表两个损失的游戏A和B,以在量子域中创建parrondo效应。我们表明,游戏A和B单独玩时失去了游戏,但在针对特定时期的特定序列进行替代游戏时,可以产生成功的期望,以实现相对阶段的不同选择。此外,我们研究了存在Parrondo Games的最初硬币的相对阶段的政权。此外,我们还分析了Parrondo的游戏与量子纠缠之间的关系,并显示了Parrondo序列在我们的方案中可能会产生最大的纠缠状态的制度。除了不同种类的量子步行的应用外,我们的结果可能鼓励开发新的量子算法。

Parrondo's paradox is a well-known counterintuitive phenomenon, where the combination of unfavorable situations can establish favorable ones. In this paper, we study one-dimensional discrete-time quantum walks, manipulating two different coins (two-state) operators representing two losing games A and B, respectively, to create the Parrondo effect in the quantum domain. We exhibit that games A and B are losing games when played individually but could produce a winning expectation when played alternatively for a particular sequence of different periods for distinct choices of the relative phase. Furthermore, we investigate the regimes of the relative phase of the initial state of coins where Parrondo games exist. Moreover, we also analyze the relationships between Parrondo's game and quantum entanglement and show regimes where the Parrondo sequence may generate a maximal entangler state in our scheme. Along with the applications of different kinds of quantum walks, our outcomes potentially encourage the development of new quantum algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源