论文标题

朱莉娅单位对应关系的豪斯多夫尺寸

Hausdorff dimension of Julia sets of unicritical correspondences

论文作者

Siqueira, Carlos

论文摘要

我们表明,如果$β> 1 $是一个合理的数字,而Holomorphic对应关系的Julia设置$ J $ $ z^β+c $最终在本地是一个本地上的驱虫剂,那么$ j $的hausdorff尺寸是由相关压力功能的零上述界定的。结果,我们得出的结论是,每当$ q^2 <p $和$β= $β= p/q $以最低的程度时,对应关系的朱莉娅集合的参数量为零。

We show that if $β>1$ is a rational number and the Julia set $J$ of the holomorphic correspondence $z^β+c$ is a locally eventually onto hyperbolic repeller, then the Hausdorff dimension of $J$ is bounded from above by the zero of the associated pressure function. As a consequence, we conclude that the Julia set of the correspondence has zero Lebesgue measure for parameters close to zero, whenever $q^2<p$ and $β=p/q$ in lowest terms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源