论文标题
使用梯度进行神经模型解释来缩放符号方法
Scaling Symbolic Methods using Gradients for Neural Model Explanation
论文作者
论文摘要
已经提出了基于满足性模量理论(SMT)求解器的符号技术来分析和验证神经网络属性,但是由于它们在较大的网络方面的可扩展性差,它们的用法受到了相当限制。在这项工作中,我们提出了一种将基于梯度的方法与符号技术相结合的技术,以扩展此类分析并证明其用于模型解释的应用。特别是,我们应用这项技术来确定与神经网络预测最相关的输入中最小区域。我们的方法使用梯度信息(基于集成梯度)来关注第一层神经元的子集,这使我们的技术可以扩展到大型网络。相应的SMT约束编码最小输入掩码发现问题,以便在掩盖输入后,所选神经元的激活仍高于阈值。解决最小蒙版后,我们的方法得分为掩模区域,以生成掩模内特征的相对顺序。这会产生一个显着图,该图在做出预测时解释了“模型在哪里”。我们在三个数据集(MNIST,Imagenet和啤酒评论)上评估我们的技术,并在定量和定性上证明了我们方法产生的区域比单独的基于梯度的方法更为稀疏,并且取得了更高的显着性评分。代码和示例位于-https://github.com/google-research/google-research/tree/master/master/smug_saligent
Symbolic techniques based on Satisfiability Modulo Theory (SMT) solvers have been proposed for analyzing and verifying neural network properties, but their usage has been fairly limited owing to their poor scalability with larger networks. In this work, we propose a technique for combining gradient-based methods with symbolic techniques to scale such analyses and demonstrate its application for model explanation. In particular, we apply this technique to identify minimal regions in an input that are most relevant for a neural network's prediction. Our approach uses gradient information (based on Integrated Gradients) to focus on a subset of neurons in the first layer, which allows our technique to scale to large networks. The corresponding SMT constraints encode the minimal input mask discovery problem such that after masking the input, the activations of the selected neurons are still above a threshold. After solving for the minimal masks, our approach scores the mask regions to generate a relative ordering of the features within the mask. This produces a saliency map which explains "where a model is looking" when making a prediction. We evaluate our technique on three datasets - MNIST, ImageNet, and Beer Reviews, and demonstrate both quantitatively and qualitatively that the regions generated by our approach are sparser and achieve higher saliency scores compared to the gradient-based methods alone. Code and examples are at - https://github.com/google-research/google-research/tree/master/smug_saliency