论文标题
变形D1-d5 orbifold SCFT $ _2 $中复合Ramond字段的相关功能
Correlation functions of composite Ramond fields in deformed D1-D5 orbifold SCFT$_2$
论文作者
论文摘要
我们研究了$ \ cal {n} =(4,4)$ supersymmmetric d1-d5 scft $ _2 $在边际模量运算符$(t^4)^n/ s_n^n/ s_n^n/ s_n $ free orbifold点上变形的两个复合扭曲的拉姆蒙德田(由两个操作员制造)的两个家族(由两个运营商制造)。我们使用两个复合算子和两个变形字段为四点功能构建了大$ n $贡献。这些功能使我们能够得出短途OPE限制并计算复合算子的异常尺寸。我们证明,可以区分两组具有twist $ m_1 $和$ m_2 $的复合拉蒙德状态:受保护状态,$ m_1+m_2 = n $,以及“提升”状态,其中$ m_1+m_2 <n $。后者需要适当的重态化。我们还将领先顺序校正得出了两点函数,并通过变形操作员将其三分函数得出。
We study two families of composite twisted Ramond fields (made by products of two operators) in the $\cal {N}=(4,4)$ supersymmetric D1-D5 SCFT$_2$ deformed by a marginal modulus operator away from its $(T^4)^N/ S_N$ free orbifold point. We construct the large-$N$ contributions to the four-point functions with two composite operators and two deformation fields. These functions allow us to derive short-distance OPE limits and to calculate the anomalous dimensions of the composite operators. We demonstrate that one can distinguish two sets of composite Ramond states with twists $m_1$ and $m_2$: protected states, for which $m_1+m_2=N$, and "lifted" states for which $m_1+m_2<N$. The latter require an appropriate renormalisation. We also derive the leading order corrections to their two-point functions, and to their three-point functions with the deformation operator.