论文标题
Tinyradarnn:结合空间和时间卷积神经网络,用于嵌入的手势识别与短距离雷达
TinyRadarNN: Combining Spatial and Temporal Convolutional Neural Networks for Embedded Gesture Recognition with Short Range Radars
论文作者
论文摘要
这项工作提出了使用低功率短范围雷达传感器的低功率高精度嵌入式手势识别算法的靶向电池操作的可穿戴设备。使用范围频率多普勒特征的2D卷积神经网络(CNN)与时间序列预测的时间卷积神经网络(TCN)结合使用。最终算法的模型大小仅为46,000个参数,仅产生92 kb的内存足迹。有两个包含26个不同人进行的挑战性手势的数据集记录了总共20,210个手势实例。在11个手势数据集上,已经实现了86.6%(26个用户)和92.4%(单用户)的准确性,与最先进的ART相当,而最先进的方法可实现87%(10用户)和94%(单个用户)(单用户),而使用基于TCN的网络则比最小的是7500X的网络。此外,手势识别分类器已在平行的超低电源处理器上实现,这表明实时预测是可行的,对于完整的TCN序列预测网络,仅21兆瓦的功率消耗是可行的,而系统级功率消耗的实现为低于100 mW。我们为在Tinyradar.Ethz.CH上收集和使用的所有代码和数据提供开源访问权限。
This work proposes a low-power high-accuracy embedded hand-gesture recognition algorithm targeting battery-operated wearable devices using low power short-range RADAR sensors. A 2D Convolutional Neural Network (CNN) using range frequency Doppler features is combined with a Temporal Convolutional Neural Network (TCN) for time sequence prediction. The final algorithm has a model size of only 46 thousand parameters, yielding a memory footprint of only 92 KB. Two datasets containing 11 challenging hand gestures performed by 26 different people have been recorded containing a total of 20,210 gesture instances. On the 11 hand gesture dataset, accuracies of 86.6% (26 users) and 92.4% (single user) have been achieved, which are comparable to the state-of-the-art, which achieves 87% (10 users) and 94% (single user), while using a TCN-based network that is 7500x smaller than the state-of-the-art. Furthermore, the gesture recognition classifier has been implemented on a Parallel Ultra-Low Power Processor, demonstrating that real-time prediction is feasible with only 21 mW of power consumption for the full TCN sequence prediction network, while a system-level power consumption of less than 100 mW is achieved. We provide open-source access to all the code and data collected and used in this work on tinyradar.ethz.ch.