论文标题

从lattice qcd带有su(3)风味对称性的$(g-2)_ $ $(g-2)_ $的hadronic灯光贡献

Hadronic light-by-light contribution to $(g-2)_μ$ from lattice QCD with SU(3) flavor symmetry

论文作者

Chao, En-Hung, Gérardin, Antoine, Green, Jeremy R., Hudspith, Renwick J., Meyer, Harvey B.

论文摘要

我们在su(3)su(3)风味对称点$m_π= m_k \ simeq 420 \,$ mev的SU(3)su(3)su(3)su(3)su(3)su(3)su(3)su(3)su(g-2)_ $的晶格QCD计算。所使用的表示形式基于坐标空间扰动理论,其所有QED元素的所有QED元素均在无限的无限欧几里得空间中实现。结果,使用有限晶格评估电磁电流的QCD四点函数的效果被指数抑制。得益于SU(3) - 最佳对称性,只有两个图表的拓扑贡献,完全连接和领先的断开连接。我们显示了两种计算连接贡献方法的连续限制的等效性,并引入了一种稀疏网格技术来计算断开的贡献。由于我们先前对斜向过渡形式的计算,我们能够纠正残留有限尺寸的效果并扩展积分的尾巴。我们通过使用仅根据其体积不同的量规集合来测试对有限尺寸效应的理解。在基于四个格子间距的连续推断后,我们获得了$a_μ^{\ rm hlbl} =(65.4 \ pm 4.9 \ pm 6.6)\ times 10^{ - 11} $,第一个错误是在单个仪表集合中的不确定性和第二个持续误差的不确定性引起的。最后,我们估计,随着夸克质量的降低,该值将如何变化。

We perform a lattice QCD calculation of the hadronic light-by-light contribution to $(g-2)_μ$ at the SU(3) flavor-symmetric point $m_π=m_K\simeq 420\,$MeV. The representation used is based on coordinate-space perturbation theory, with all QED elements of the relevant Feynman diagrams implemented in continuum, infinite Euclidean space. As a consequence, the effect of using finite lattices to evaluate the QCD four-point function of the electromagnetic current is exponentially suppressed. Thanks to the SU(3)-flavor symmetry, only two topologies of diagrams contribute, the fully connected and the leading disconnected. We show the equivalence in the continuum limit of two methods of computing the connected contribution, and introduce a sparse-grid technique for computing the disconnected contribution. Thanks to our previous calculation of the pion transition form factor, we are able to correct for the residual finite-size effects and extend the tail of the integrand. We test our understanding of finite-size effects by using gauge ensembles differing only by their volume. After a continuum extrapolation based on four lattice spacings, we obtain $a_μ^{\rm hlbl} = (65.4\pm 4.9 \pm 6.6)\times 10^{-11}$, where the first error results from the uncertainties on the individual gauge ensembles and the second is the systematic error of the continuum extrapolation. Finally, we estimate how this value will change as the light-quark masses are lowered to their physical values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源