论文标题
两步的基于表面的3D深度学习管道,用于分割颅内动脉瘤
A Two-step Surface-based 3D Deep Learning Pipeline for Segmentation of Intracranial Aneurysms
论文作者
论文摘要
颅内动脉瘤的确切形状对于医学诊断和手术计划至关重要。尽管已经针对此细分任务提出了基于体素的深度学习框架,但其性能仍然有限。在这项研究中,我们提供了两步的基于表面的深度学习管道,可实现更高的性能。我们提出的模型采用了包含动脉瘤作为输入的整个主要脑动脉的表面模型,并返回动脉瘤表面作为输出。用户首先通过手动指定飞行时间磁共振血管造影图像的多个阈值来生成表面模型。然后,该系统从整个大脑动脉中采样了小的表面碎片,并根据是否存在基于点的深度学习网络(PointNet ++)对表面碎片进行分类。最后,该系统将表面分割(SO-NET)应用于包含动脉瘤的表面碎片。我们通过对拟议的基于表面的框架和现有基于体素的方法进行数量来对分割性能进行直接比较,在这种框架中,我们的框架获得了比以前的方法更高的骰子相似性系数(72%)(46%)。
The exact shape of intracranial aneurysms is critical in medical diagnosis and surgical planning. While voxel-based deep learning frameworks have been proposed for this segmentation task, their performance remains limited. In this study, we offer a two-step surface-based deep learning pipeline that achieves significantly higher performance. Our proposed model takes a surface model of entire principal brain arteries containing aneurysms as input and returns aneurysms surfaces as output. A user first generates a surface model by manually specifying multiple thresholds for time-of-flight magnetic resonance angiography images. The system then samples small surface fragments from the entire brain arteries and classifies the surface fragments according to whether aneurysms are present using a point-based deep learning network (PointNet++). Finally, the system applies surface segmentation (SO-Net) to surface fragments containing aneurysms. We conduct a direct comparison of segmentation performance by counting voxels between the proposed surface-based framework and the existing voxel-based method, in which our framework achieves a much higher dice similarity coefficient score (72%) than the prior approach (46%).