论文标题
薄带中2D原始方程的静静力近似
Hydrostatic approximation of the 2D primitive equations in a thin strip
论文作者
论文摘要
我们证明了2D非旋转原始方程的全局良好性,该方程在宽度$ \ eps $的细条中,用于切线方向分析的小数据。我们还证明,静液压极限(当$ \ eps \至0 $时)是速度的几个类似于prandtl的系统,该系统具有温度的传输扩散方程。
We prove the global wellposedness of the 2D non-rotating primitive equations with no-slip boundary conditions in a thin strip of width $\eps$ for small data which are analytic in the tangential direction. We also prove that the hydrostatic limit (when $\eps \to 0$) is a couple of a Prandtl-like system for the velocity with a transport-diffusion equation for the temperature.