论文标题

单外观多主管SAR断层扫描:介绍

Single-Look Multi-Master SAR Tomography: An Introduction

论文作者

Ge, Nan, Bamler, Richard, Hong, Danfeng, Zhu, Xiao Xiang

论文摘要

本文解决了单程多主机SAR断层扫描的一般问题。为此,我们建立了单程多主机数据模型,分析其对单个和双散射器的影响,并提出一个通用的反转框架。该框架的核心是NonConvex稀疏恢复,我们为此开发了两种算法:一个将常规的非线性最小二乘(NLS)扩展到单位外观的多主数据模型,另一个基于Bi-Convex松弛和交替的最小化(BICRAM)。我们为NLS子问题的目标函数提供了两个定理,在一维情况下,其分析溶液直至恒定相角。我们还从实验中报告了有关BICRAM不同加速技术的发现。所提出的算法应用于真实的Terrasar-X数据集,并通过SAR成像地球地球地球和仿真框架可用的高度地面真实验证。从经验上讲,如果应用于单个外观\ emph {multi-master}堆栈,则\ emph {单主}方法可能不足以进行中间分离,并且\ emph {Multi-Master}方法确实可以表现出更好的效果(尽管在单个散点机的情况下,\尽管在计算中更昂贵)。此外,本文还阐明了单程Bistatic SAR断层扫描的特殊情况,该案例与当前和未来的SAR任务有关,例如Tandem-X和Tandem-L。

This paper addresses the general problem of single-look multi-master SAR tomography. For this purpose, we establish the single-look multi-master data model, analyze its implications for single and double scatterers, and propose a generic inversion framework. The core of this framework is nonconvex sparse recovery, for which we develop two algorithms: one extends the conventional nonlinear least squares (NLS) to the single-look multi-master data model, and the other is based on bi-convex relaxation and alternating minimization (BiCRAM). We provide two theorems for the objective function of the NLS subproblem, which lead to its analytic solution up to a constant phase angle in the one-dimensional case. We also report our findings from the experiments on different acceleration techniques for BiCRAM. The proposed algorithms are applied to a real TerraSAR-X data set, and validated with height ground truth made available via a SAR imaging geodesy and simulation framework. This shows empirically that the \emph{single-master} approach, if applied to a single-look \emph{multi-master} stack, can be insufficient for layover separation, and the \emph{multi-master} approach can indeed perform slightly better (despite being computationally more expensive) even in the case of single scatterers. Besides, this paper also sheds light on the special case of single-look bistatic SAR tomography, which is relevant for current and future SAR missions such as TanDEM-X and Tandem-L.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源